Complementary inequalities I: Inequalities complementary to Cauchy's inequality for sums of real numbers

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some complementary inequalities to Jensen’s operator inequality

In this paper, we study some complementary inequalities to Jensen's inequality for self-adjoint operators, unital positive linear mappings, and real valued twice differentiable functions. New improved complementary inequalities are presented by using an improvement of the Mond-Pečarić method. These results are applied to obtain some inequalities with quasi-arithmetic means.

متن کامل

Complementary Inequalities Involving the Stolarsky Mean

Let n be a positive integer and p, q, a, and b real numbers satisfying p > q > 0 and 0 < a < b. It is proved that for the real numbers a1, . . . , an ∈ a, b , the maximum of the function fp,q a1, . . . , an a p 1 · · · a p n /n − aq1 · · · a q n /n p/q is attained if and only if k n of the numbers a1, . . . , an are equal to a and the other n − k n are equal to b, while k n is one of the values...

متن کامل

extensions of some polynomial inequalities to the polar derivative

توسیع تعدادی از نامساوی های چند جمله ای در مشتق قطبی

15 صفحه اول

Complementary Halfspaces and Trigonometric Ceva–brocard Inequalities for Polygons

The product of ratios that equals 1 in Ceva’s Theorem is analyzed in the case of non-concurrent Cevians, for triangles as well as arbitrary convex polygons. A general lemma on complementary systems of inequalities is proved, and used to classify the possible cases of non-concurrent Cevians. In the concurrent case, particular consideration is given to the Brocard configuration defined by equal a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 1964

ISSN: 0022-247X

DOI: 10.1016/0022-247x(64)90006-x